

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO DE JOINVILLE

Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos - PPGESE Rua Dona Francisca, 8300, Distrito Industrial. Joinville / SC - Brasil Tel: 47 3721-2260

PLANO DE ENSINO 2020.1¹

 I. IDENTIFICAÇÃO DA DISCIPLINA:

 CÓDIGO
 NOME DA DISCIPLINA
 HORAS-AULA SEMANAIS TEÓRICAS
 HORAS-AULA TRIMESTRAIS

 ESE410002
 Análise e Concepção de Sistemas Eletrônicos
 3
 0
 45 horas

II. PROFESSOR(ES) MINISTRANTE(S)

Prof^a Anderson Wedderhoff Spengler

III. PRÉ-REQUISITO(S) (Código(s) e nome da(s) disciplina(s)

IV. CURSOS PARA OS QUAIS A DISCIPLINA É OFERECIDA

(41010086) Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos - Mestrado

V. EMENTA

Processo de automação: medição, atuação e controle. Automação e controle com Microcontroladores e Dispositivos Lógico-Programáveis. Interfaceamento com dispositivos externos. Protocolos de comunicação. Gerenciamento de energia em sistemas eletrônicos. Dispositivos de baixa e média potência: semicondutores e conversores de energia. Estabilidade e desempenho de sistemas realimentados.

VI. OBJETIVOS

A disciplina tem por objetivo mostrar para todos os discentes do Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos os conceitos básicos e necessários para o curso. Desta forma, são apresentados conceitos sistemas embarcados, sistemas de potência e controle que são as bases para as próximas disciplinas.

VII. CONTEÚDO PROGRAMÁTICO

- a) Microcontroladores
- b) Dispositivos Lógico-Programáveis
- c) Interfaceamento com Dispositivos Externos
- d) Protocolos de Comunicação
- e) Gerenciamento de energia em sistemas eletrônicos
- f) Dispositivos de baixa e média potência: semicondutores e conversores de energia
- g) Estabilidade e desempenho de sistemas realimentados

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

A metodologia consiste em aulas expositivas de conteúdos relevantes que serão disponibilizadas on-line, em plataforma ainda a ser definida, porém de livre acesso aos estudantes.

Além das aulas expositivas os estudantes receberam textos e tarefas a serem executadas, possivelmente haverá uma parte prática a ser realizada individualmente pelo estudante, que utilizará de kit de desenvolvimento e softwares de programação e simulação.

IX. ATIVIDADES PRÁTICAS

1. Haverá a parte prática a ser realizada pelos estudantes, que deverá ser feita utilizando kits de desenvolvimento de sistemas embarcados ou então, caso necessário, utilizando apenas ferramentas de simulação.

X. METODOLOGIA DE AVALIAÇÃO E CONTROLE DE FREQUÊNCIA

A avaliação do aluno acontecerá com a entrega de três trabalhos, avaliados através de relatório. O primeiro irá compor 50% da nota (englobará os conceitos de sistemas embarcados), o segundo 40% da nota (conceitos de sistemas de potência) e o terceiro 10% (conceitos de controle).

A presença será aferida pela entrega dos relatórios, mantendo relação com os pesos acima citados para a proporção.

¹ Plano de ensino adaptado, em caráter excepcional e transitório, para substituição de aulas presenciais por aulas em meios digitais, enquanto durar a pandemia do novo coronavírus – COVID-19, em atenção à Resolução Normativa 140/2020/CUn.

XI. LEGISLAÇÃO

Não será permitido gravar, fotografar ou copiar as aulas disponibilizadas no Moodle. O uso não autorizado de material original retirado das aulas constitui contrafação – violação de direitos autorais – conforme a <u>Lei nº 9.610/98 – Lei de Direitos Autorais</u>.

XI. REFERÊNCIAS

BIBLIOGRAFIA BÁSICA

- Microcontroladores

Brown, Geoffrey. Discovering the STM32 Microcontroller. Indiana University, 2016. (Disponível em: https://legacy.cs.indiana.edu/~geobrown/book.pdf)

Embedded Systems Shape the World. (Disponível em: http://users.ece.utexas.edu/~valvano/Volume1/E-Book/)

- Dispositivos Lógico-Programáveis

Advanced FPGA Design:Architecture, Implementation, and Optimization 9780470127896 Components, Circuits, Devices & Systems Steve Kilts 2007 Wiley-IEEE Press 20100213 (Disponível em: http://ieeexplore.ieee.org/servlet/opac?bknumber=5201491)

- Eletrônica de Potência

RASHID, Muhammad H. Eletrônica de potência: dispositivos, circuitos e aplicações . 4. ed. São Paulo: Pearson, 2014. xxii, 883 p. ISBN 9788543005942. (Biblioteca Digital)

- Controle Digital

ÅSTRÖM, K. J.; WITTENMARK, B. Computer-controlled systems:theory and design. 3. ed. Mineola: Dover, 2011. ISBN-13: 978-0-4864861-3-0

Será disponibilizado artigos para essa parte da matéria.

Cronograma

Aula	Data	СН	Conteúdo
1	03/03	3h	Aula de apresentação do planejamento didático, plano de ensino e principais
			teóricos que fazem a base dos estudos da disciplina.
			Introdução - processo de automação
2	10/03	3h	Automação e Controle com Microcontroladores
3	01/09	6h	Automação e Controle com Dispositivos Lógico Programáveis
			Moodle da disciplina.
			Apresentação de simulador de lógica funcional.
			Proposição e resolução de exercícios de DLP.
4	08/09	4h	Interfaceamento com Dispositivos Externos
			Moodle da disciplina.
			Apresentação de simulador eletrônico.
			Proposição e resolução de exercícios
5	15/09	6h	Protocolos de Comunicação
			Moodle da disciplina.
			Apresentação da IDE de programação de microcontrolador
			Proposição e resolução de exercícios com microcontrolador e dispositivos
			externos.
	22/00	<i>c</i> 1	Apresentação do trabalho a ser entregue até 29/09
6	22/09	6h	Proposição e resolução de exercícios com microcontrolador e dispositivos
			externos.
7	29/09	6h	Acompanhamento do trabalho. Gerenciamento de energia em sistemas eletrônicos
'	29/09	OII	Moodle da disciplina.
			Utilização de simulador eletrônico para demonstração de circuitos
8	06/10	6h	Dispositivos de baixa e média potência: semicondutores e conversores de energia
0	00/10	OII	Moodle da disciplina.
			Utilização de simulador eletrônico para demonstração de circuitos
			Apresentação do trabalho a ser entregue até a próxima aula.
9	13/10	5h	Estabilidade e desempenho de sistemas realimentados
	10,10		Moodle da disciplina.
			Discussão de artigos para leitura sobre o tema.